
Behat Code Coverage Documentation
Release version 5

Doug Wright

Feb 03, 2024





CONTENTS

1 License 3

i



ii



Behat Code Coverage Documentation, Release version 5

Behat Code Coverage is an extension for Behat that can generate code coverage reports when testing a PHP application.
The extension wraps the same php-code-coverage library that is used by PHPUnit thereby producing reports that are
familiar to developers and interoperable with other tooling.

Note: The authors of Behat pedantically, but correctly, point out that .feature files are not strictly speaking tests
even though when constructed properly the scenarios described in them should cover both the happy and sad paths in
an application.

Technically, Behat is a scenario runner, not a test runner. The scenarios might be run by hand. Or the application under
scrutiny might not be a local PHP application, it might be running on a remote server and/or the software might not even
be written in PHP. Additionally by the very nature of needing to invoke the entire application to perform each scenario,
it would be very hard to construct a set of scenarios that cover all possible codepaths in an application. Something like
PHPUnit is much better to use here if your goal is comprehensive code coverage as you can unit test each component
in isolation.

However, out in the real world we don’t normally draw a distinction between the .feature files as a standalone con-
cept and the Contexts that implement them - we simply refer to Behat testing. We also tend to use Behat when the
application being tested is written in PHP. And as with any test suite, it’s nice to know how much of your application
code is covered by a test suite. What you do with that information is up to you :)

CONTENTS 1

https://docs.behat.org/en/latest/
https://github.com/sebastianbergmann/php-code-coverage
https://github.com/Behat/Behat/issues/92


Behat Code Coverage Documentation, Release version 5

2 CONTENTS



CHAPTER

ONE

LICENSE

Behat Code Coverage is licensed under the BSD-2-Clause License. See license.txt for full details.

1.1 Installation

The recommended way to install Behat Code Coverage is to use Composer. From the command line simply execute
the following to add dvdoug/behat-code-coverage to the require-dev section of your project’s composer.json
file. Composer will automatically take care of downloading the source and configuring an autoloader:

composer require --dev dvdoug/behat-code-coverage

The code is also available to download from GitHub

After installation, in your project’s behat.yml or behat.yml.dist, add DVDoug\Behat\CodeCoverage\
Extension into the extensions key under default to enable it.

The below example represents a typical configuration you may wish to use as a starting point. Each option is more
fully explained in the next section.

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
filter:

include:
directories:

'src': ~
reports:

html:
target: build/coverage-behat

text:
showColors: true

3

https://github.com/dvdoug/behat-code-coverage/blob/master/license.txt
https://getcomposer.org
https://github.com/dvdoug/behat-code-coverage


Behat Code Coverage Documentation, Release version 5

1.1.1 Compatibility

Since both PHPUnit and Behat Code Coverage both depend upon php-code-coverage, it is not always possible to run an
older version of PHPUnit alongside the newest version of this library or vice versa since they both need to be compatible
with the same underlying version of the code coverage component. Where reasonably possible Behat Code Coverage
maintains support for multiple versions of the coverage library to ease the upgrade path, however where a new version
is significantly incompatible with older ones or where a compelling new feature exists the minimum supported version
may be raised. Fixes for any subsequently discovered bugs will be backported as appropriate.

Behat Code Coverage Behat php-code-coverage PHPUnit Notes
5.3 3.10+ 9.2+, 10, 11 9.5.5+, 10, 11
5.2 3.5+ 9.2+ 9.4+ Cobertura format support
5.1 3.5+ 9.1+ 9.3.4+ Caching between runs
5.0 3.5+ 6, 7, 8, 9 7, 8, 9

1.2 Configuration

To do anything useful, once installed, you should configure Behat Code Coverage according to your project needs.

Each of the settings described below has a direct equivalent in PHPUnit, if your codebase uses both testing frameworks
you may wish to ensure the settings are aligned between the two tools.

Settings are configured in your project’s behat.yml or behat.yml.dist.

1.2.1 Driver

In order to generate code coverage data, you must have a code coverage driver installed - you may use either Xdebug
or the PCOV extension. Drivers are detected at runtime, they do not need to be configured.

1.2.2 Filter

A filter is the mechanism to include (or exclude) directories or files from the generated coverage reports. Technically
this is an optional configuration setting, but practically speaking most projects will want to configure this to report only
on their own source files rather than e.g. test files or vendor files.

For directories, list them by key. Optionally, you can specify a prefix or suffix:

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
filter:

include:
directories:

'src':
suffix: 'Controller.php'

'src/Repository':
prefix: 'API'

exclude:
directories:

'tests/data': ~

4 Chapter 1. License



Behat Code Coverage Documentation, Release version 5

For files, list them by name:

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
filter:

include:
files:

- 'bootstrap.php'
- 'index.php'

exclude:
files:

- 'src/ExcludeMe.php'
- 'src/ExcludeMeToo.php'

Filters have two additional settings, to control how files that have not been covered should be handled in the report. By
default uncovered files are included but not processed.

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
filter:

includeUncoveredFiles: true # defaults to true
processUncoveredFiles: false # defaults to false

• Included means that the file is incorporated into the reporting, showing up as 0% covered. This allows you to
see files that you haven’t written any tests for yet. If you choose not to include uncovered files, then only files
that have been loaded by your test suite (whether directly or indirectly) will be shown on the report.

• Uncovered files, by definition, will not been loaded into the PHP runtime environment during the execution
of the test suite. This means that they have not been analysed by the coverage driver for detection of things
like executable vs non-executable lines, dead code detection or calculation of branches and paths. By opting
uncovered files into processing, the files will be loaded via an include() call and passed through the driver in
exactly the same way as covered files are. However, not all files can be safely loaded in this way, for instance
include()ing a script may have runtime side-effects. Because Behat Code Coverage cannot know the structure
of your codebase and which files are safe to include() and which are not, by default uncovered file processing
is disabled for safety reasons.

Note: The processUncoveredFiles setting has been removed in php-code-coverage v10, configuring it here
is deprecated

1.2. Configuration 5



Behat Code Coverage Documentation, Release version 5

1.2.3 Reports

Behat Code Coverage allows you to generate reports in any/all of the report formats provided by php-code-coverage.
Reports are configured under the reports key.

Text

The text report is the easiest way to get started, it simply outputs the report results to the screen after each test run. It
is configured by setting the text key. The default values are outlined below:

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
reports:

text:
showColors: false
showOnlySummary: false
showUncoveredFiles: false
lowUpperBound: 50
highLowerBound: 90

• If showColors is true, the results will be output in a colour-coded format, red for low coverage, amber/yellow
for a medium amount of coverage and green for high coverage. If desired, the thresholds for each colour can be
configured via lowUpperBound and highLowerBound.

• If you have a large codebase, outputting the coverage data for each and every individual file to the CLI may be
too be noisy to be helpful. If so, you can set showOnlySummary to true which will output only a project-level
overview.

• By default, when showing data for individual files the text report does not show data for uncovered files (even
if data collection enabled under filter). This can be changed if desired by setting showUncoveredFiles to
true. Note that this is a report-specific display option only, choosing not to show uncovered files in the text report
has no impact on whether they are included in other types of report.

HTML

The HTML report is the most common format of report. As well as a summary report for the project providing high-
level data, it also includes a detailed overview of each file showing the coverage on a function by function, line by line
basis. It is configured by setting the html key. The default values are outlined below:

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
reports:

html:
target: <directory> # no default value, you must specify
lowUpperBound: 50
highLowerBound: 90
colors:

successLow: '#dff0d8'
successMedium: '#c3e3b5'
successHigh: '#99cb84'
warning: '#fcf8e3'

(continues on next page)

6 Chapter 1. License



Behat Code Coverage Documentation, Release version 5

(continued from previous page)

danger: '#f2dede'
customCSSFile: ~ # defaults to null, i.e. no custom CSS file

• The mandatory target key specifies the target directory to place the report files.

• The HTML report is heavily colour-coded format using red for low coverage, amber/yellow for a medium amount
of coverage and green for high coverage. If desired, the thresholds for each colour can be configured via
lowUpperBound and highLowerBound, and the precise colours used via the colors key. Further customi-
sation may be done via specifying a custom CSS file

Note: The colors and customCSSFile settings are only available from php-code-coverage v10

Clover

Originating from the Java world, Clover-format reports are a standard way of exchanging coverage data between tools.
It is configured by setting the clover key. The default values are outlined below:

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
reports:

clover:
target: <file> # no default value, you must specify
name: ''

• The mandatory target key specifies the destination filename to use for the report. The reports are in XML
format, an .xml file extension is suggested.

• Optionally, you can configure the name of your project via the name key.

Cobertura

Also originating from the Java world, Cobertura-format reports are becoming a standard way of exchanging coverage
data between tools. It is configured by setting the cobertura key. The default values are outlined below:

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
reports:

cobertura:
target: <file> # no default value, you must specify
name: ''

• The mandatory target key specifies the destination filename to use for the report. The reports are in XML
format, an .xml file extension is suggested.

• Optionally, you can configure the name of your project via the name key.

1.2. Configuration 7



Behat Code Coverage Documentation, Release version 5

Crap4j

An older, discontinued tool from the Java world. You can generate Crap4j-compatible reports by setting the crap4j
key. The default values are outlined below:

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
reports:

crap4j:
target: <file> # no default value, you must specify
name: ''

• The mandatory target key specifies the destination filename to use for the report. The reports are in XML
format, an .xml file extension is suggested.

• Optionally, you can configure the name of your project via the name key.

PHP “.cov”

A PHP or “.cov” report is a raw serialisation of internal php-code-coverage state, allowing for full fidelity of data to be
preserved. They can be manipulated by the phpcov tool, for instance to combine reports from multiple testing tools.
You can generate PHP “.cov” reports by setting the php key.

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
reports:

php:
target: <file> # no default value, you must specify

• The mandatory target key specifies the destination filename to use for the report. The reports are actually PHP,
but a .cov file extension is customary.

PHPUnit XML

You can generate PHPUnit XML reports by setting the xml key.

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
reports:

xml:
target: <directory> # no default value, you must specify

• The mandatory target key specifies the target directory to use for the report.

8 Chapter 1. License

https://github.com/sebastianbergmann/phpcov


Behat Code Coverage Documentation, Release version 5

1.2.4 Branch and path coverage

When using Xdebug as a coverage driver, it has the ability to generate branch and path coverage data as well as the
traditional line-based data. More information on this topic is available at https://doug.codes/php-code-coverage.

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
branchAndPathCoverage: true

By default branchAndPathCoverage is true when running under Xdebug, false otherwise.

1.2.5 Caching

Since analysing source code files to generate coverage reports is computationally expensive, Behat Code Coverage
makes use of a cache to ameliorate this.

default:
extensions:

DVDoug\Behat\CodeCoverage\Extension:
cache: <directory>

The default cache directory is sys_get_temp_dir() . '/behat-code-coverage-cache'. You may wish to re-
locate this this to be inside your project workspace.

1.3 Changelog

1.3.1 Unreleased - 2024-xx-xx

1.3.2 5.3.3 - 2024-02-03

Added

• Compatibility with phpunit/php-code-coverage v11

Changed

• Minimum phpunit/php-code-coverage version bumped to 10.1

1.3.3 5.3.2 - 2023-12-09

Added

• Support for Symfony 7

1.3. Changelog 9

https://doug.codes/php-code-coverage


Behat Code Coverage Documentation, Release version 5

Removed

• Support for Symfony 4

1.3.4 5.3.1 - 2023-05-08

Changed

• Stopped using some deprecated methods inside phpunit/php-code-coverage v10.1

Fixed

• Better handling of PCOV and Xdebug running side by side

1.3.5 5.3.0 - 2023-02-04

Added

• Compatibility with phpunit/php-code-coverage v10

• Added colors and customCSSFile options to HTML report configuration

1.3.6 5.2.2 - 2021-11-30

Added

• Support for Symfony 6

Changed

• Improved error messages when a coverage driver cannot be found

• Deprecated processUncoveredFiles setting, it has been removed as of php-code-coverage v10.

1.3.7 5.2.1 - 2021-01-10

Fixed

• When Xdebug was enabled, but its coverage feature was disabled an exception was thrown. This scenario is now
treated the same as when no coverage driver is loaded at all (a warning is printed but Behat is allowed to run to
completion)

10 Chapter 1. License



Behat Code Coverage Documentation, Release version 5

1.3.8 5.2.0 - 2020-10-11

Added

• Added support for the Cobertura report format

Changed

• Minimum phpunit/php-code-coverage version bumped to 9.2

1.3.9 5.1.1 - 2020-08-14

Fixed

• Make the --no-coverage option work again

1.3.10 5.1.0 - 2020-08-10

Added

• Support for phpunit/php-code-coverage‘s static analysis cache introduced in v9.1. This can
be configured via the cache key in behat.yml, otherwise defaults to sys_get_temp_dir() . '/
behat-code-coverage-cache'

Changed

• Minimum phpunit/php-code-coverage version bumped to 9.1

Removed

• Support for Symfony 3.4, in alignment with https://github.com/Behat/Behat/issues/1296

1.3.11 5.0.1 - 2021-09-13

Fixed

• Make the --no-coverage option work again

1.3.12 5.0.0 - 2020-08-07

Added

• Compatibility with phpunit/php-code-coverage v9. Branch and path coverage is automatically enabled
when running under Xdebug. For more information on this feature, see https://doug.codes/php-code-coverage

• branchAndPathCoverage configuration key to enable/disable path and branch coverage. Setting this to true
explicitly will warn when the feature cannot be used.

• Support for PCOV

1.3. Changelog 11

https://github.com/Behat/Behat/issues/1296
https://doug.codes/php-code-coverage


Behat Code Coverage Documentation, Release version 5

Removed

• The old report configuration key, use reports instead

• Removed forceCoversAnnotation and mapTestClassNameToCoveredClassName configuration keys,
these options are not supported by php-code-coverage anymore

• Removed the whitelist configuration key to align with php-code-coverage v9 terminology. All former
subkeys of whitelist are now subkeys of filter

• Renamed addUncoveredFilesFromWhitelist and processUncoveredFilesFromWhitelist to
includeUncoveredFiles and processUncoveredFiles to align with php-code-coverage v9 ter-
minology

• Removed the custom driver selection logic and replaced it with built-in logic from php-code-coverage

• The RemoteXDebug driver, it was a companion to an old Symfony bundle, not a generally-usable feature

• Removed legacy LeanPHP\Behat\CodeCoverage alias

1.3.13 4.1.1 - 2020-02-15

Added

• Compatibility with phpunit/php-code-coverage v8

1.3.14 4.1.0 - 2019-11-04

Added

• Added reports configuration key to enable generation of multiple coverage output formats, with schema vali-
dation of the available format-specific options

Deprecated

• The report configuration key as it only allowed for a single report type

1.3.15 4.0.1 - 2019-08-04

Added

• Added back support for LeanPHP\Behat\CodeCoverage in behat.yml for seamless drop-in of the fork

• Support for phpdbg

12 Chapter 1. License



Behat Code Coverage Documentation, Release version 5

Fixed

• Issue with directories containing dashes in the name

• Issue with xdebug and delete calls

1.3.16 4.0.0 - 2019-08-04

Added

• Support for version 7.0 of phpunit/php-code-coverage

Changed

• Changed namespace of all code to LeanPHP\Behat\CodeCoverage from DVDoug\Behat\CodeCoverage

• Minimum version of PHP supported is 7.1

Removed

• Support for Symfony components older than <3.4

• Support for HHVM

1.3. Changelog 13


	License
	Installation
	Compatibility

	Configuration
	Driver
	Filter
	Reports
	Text
	HTML
	Clover
	Cobertura
	Crap4j
	PHP “.cov”
	PHPUnit XML

	Branch and path coverage
	Caching

	Changelog
	Unreleased - 2024-xx-xx
	5.3.3 - 2024-02-03
	Added
	Changed

	5.3.2 - 2023-12-09
	Added
	Removed

	5.3.1 - 2023-05-08
	Changed
	Fixed

	5.3.0 - 2023-02-04
	Added

	5.2.2 - 2021-11-30
	Added
	Changed

	5.2.1 - 2021-01-10
	Fixed

	5.2.0 - 2020-10-11
	Added
	Changed

	5.1.1 - 2020-08-14
	Fixed

	5.1.0 - 2020-08-10
	Added
	Changed
	Removed

	5.0.1 - 2021-09-13
	Fixed

	5.0.0 - 2020-08-07
	Added
	Removed

	4.1.1 - 2020-02-15
	Added

	4.1.0 - 2019-11-04
	Added
	Deprecated

	4.0.1 - 2019-08-04
	Added
	Fixed

	4.0.0 - 2019-08-04
	Added
	Changed
	Removed




