

Behat Code Coverage

Behat Code Coverage is an extension for Behat [https://docs.behat.org/en/latest/] that can generate code coverage reports when testing a PHP application.
The extension wraps the same php-code-coverage [https://github.com/sebastianbergmann/php-code-coverage] library that is used by PHPUnit thereby producing
reports that are familiar to developers and interoperable with other tooling.

Note

The authors of Behat pedantically, but correctly, point out [https://github.com/Behat/Behat/issues/92] that .feature files are not strictly speaking
tests even though when constructed properly the scenarios described in them should cover both the happy and sad paths
in an application.

Technically, Behat is a scenario runner, not a test runner. The scenarios might be run by hand. Or the application
under scrutiny might not be a local PHP application, it might be running on a remote server and/or the software might
not even be written in PHP. Additionally by the very nature of needing to invoke the entire application to perform each
scenario, it would be very hard to construct a set of scenarios that cover all possible codepaths in an application.
Something like PHPUnit is much better to use here if your goal is comprehensive code coverage as you can unit test each
component in isolation.

However, out in the real world we don’t normally draw a distinction between the .feature files as a standalone concept
and the Contexts that implement them - we simply refer to Behat testing. We also tend to use Behat when the
application being tested is written in PHP. And as with any test suite, it’s nice to know how much of your application
code is covered by a test suite. What you do with that information is up to you :)

License

Behat Code Coverage is licensed under the BSD-2-Clause License. See license.txt [https://github.com/dvdoug/behat-code-coverage/blob/master/license.txt] for full details.

	Installation

	Configuration

Installation

The recommended way to install PHPCoord is to use Composer [https://getcomposer.org]. From the command line simply execute the following to add
dvdoug/behat-code-coverage to the require-dev section of your project’s composer.json file. Composer will
automatically take care of downloading the source and configuring an autoloader:

composer require --dev dvdoug/behat-code-coverage

The code is also available to download from GitHub [https://github.com/dvdoug/behat-code-coverage]

After installation, in your project’s behat.yml or behat.yml.dist, add DVDoug\Behat\CodeCoverage\Extension
into the extensions key under default to enable it.

The below example represents a typical configuration you may wish to use as a starting point. Each option is more fully
explained in the next section.

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 filter:
 include:
 directories:
 'src': ~
 reports:
 html:
 target: build/coverage-behat
 text:
 showColors: true

Compatibility

Since both PHPUnit and Behat Code Coverage both depend upon php-code-coverage, it is not always possible to run an
older version of PHPUnit alongside the newest version of this library or vice versa since they both need to be compatible
with the same underlying version of the code coverage component. Where reasonably possible Behat Code Coverage maintains
support for multiple versions of the coverage library to ease the upgrade path, however where a new version is
significantly incompatible with older ones or where a compelling new feature exists the minimum supported version may be
raised. Fixes for any subsequently discovered bugs will be backported as appropriate.

	Behat Code Coverage

	Behat

	php-code-coverage

	PHPUnit

	Notes

	5.3

	3.8.1+

	9.2+, 10

	9.5.5+, 10

	Not yet released

	5.2

	3.5+

	9.2+

	9.4+

	Cobertura format support

	5.1

	3.5+

	9.1+

	9.3.4+

	Caching between runs

	5.0

	3.5+

	6, 7, 8, 9

	7, 8, 9

	

Configuration

To do anything useful, once installed, you should configure Behat Code Coverage according to your project needs.

Each of the settings described below has a direct equivalent in PHPUnit, if your codebase uses both testing frameworks
you may wish to ensure the settings are aligned between the two tools.

Settings are configured in your project’s behat.yml or behat.yml.dist.

Driver

In order to generate code coverage data, you must have a code coverage driver installed - using either Xdebug or the
PCOV extensions is recommended, although you can also make use of PHP’s built in PHPDBG. Drivers are detected at runtime,
they do not need to be configured.

Filter

A filter is the mechanism to include (or exclude) directories or files from the generated coverage reports. Technically
this is an optional configuration setting, but practically speaking most projects will want to configure this to report
only on their own source files rather than e.g. test files or vendor files.

For directories, list them by key. Optionally, you can specify a prefix or suffix:

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 filter:
 include:
 directories:
 'src':
 suffix: 'Controller.php'
 'src/Repository':
 prefix: 'API'
 exclude:
 directories:
 'tests/data' ~

For files, list them by name:

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 filter:
 include:
 files:
 - 'bootstrap.php'
 - 'index.php'
 exclude:
 files:
 - 'src/ExcludeMe.php'
 - 'src/ExcludeMeToo.php'

Filters have two additional settings, to control how files that have not been covered should be handled in the report.
By default uncovered files are included but not processed.

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 filter:
 includeUncoveredFiles: true # defaults to true
 processUncoveredFiles: false # defaults to false

	Included means that the file is incorporated into the reporting, showing up as 0% covered. This allows you to see
files that you haven’t written any tests for yet. If you choose not to include uncovered files, then only files that
have been loaded by your test suite (whether directly or indirectly) will be shown on the report.

	Uncovered files, by definition, will not been loaded into the PHP runtime environment during the execution of the test
suite. This means that they have not been analysed by the coverage driver for detection of things like executable vs
non-executable lines, dead code detection or calculation of branches and paths. By opting uncovered files into
processing, the files will be loaded via an include() call and passed through the driver in exactly the same way as
covered files are. However, not all files can be safely loaded in this way, for instance include()ing a script
may have runtime side-effects. Because Behat Code Coverage cannot know the structure of your codebase and which files
are safe to include() and which are not, by default uncovered file processing is disabled for safety reasons.

Note

The processUncoveredFiles setting has been removed in php-code-coverage v10, configuring it here is deprecated

Reports

Behat Code Coverage allows you to generate reports in any/all of the report formats provided by php-code-coverage.
Reports are configured under the reports key.

Text

The text report is the easiest way to get started, it simply outputs the report results to the screen after each test
run. It is configured by setting the text key. The default values are outlined below:

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 reports:
 text:
 showColors: false
 showOnlySummary: false
 showUncoveredFiles: false
 lowUpperBound: 50
 highLowerBound: 90

	If showColors is true, the results will be output in a colour-coded format, red for low coverage, amber/yellow
for a medium amount of coverage and green for high coverage. If desired, the thresholds for each colour can be
configured via lowUpperBound and highLowerBound.

	If you have a large codebase, outputting the coverage data for each and every individual file to the CLI may be too
be noisy to be helpful. If so, you can set showOnlySummary to true which will output only a project-level
overview.

	By default, when showing data for individual files the text report does not show data for uncovered files
(even if data collection enabled under filter). This can be changed if desired by setting showUncoveredFiles
to true. Note that this is a report-specific display option only, choosing not to show uncovered files in the text
report has no impact on whether they are included in other types of report.

HTML

The HTML report is the most common format of report. As well as a summary report for the project providing high-level
data, it also includes a detailed overview of each file showing the coverage on a function by function, line by line
basis. It is configured by setting the html key. The default values are outlined below:

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 reports:
 html:
 target: <directory> # no default value, you must specify
 lowUpperBound: 50
 highLowerBound: 90

	The mandatory target key specifies the target directory to place the report files.

	The HTML report is heavily colour-coded format using red for low coverage, amber/yellow for a medium amount of
coverage and green for high coverage. If desired, the thresholds for each colour can be configured via
lowUpperBound and highLowerBound.

Clover

Originating from the Java world, Clover-format reports are a standard way of exchanging coverage data
between tools. It is configured by setting the clover key. The default values are outlined below:

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 reports:
 clover:
 target: <file> # no default value, you must specify
 name: ''

	The mandatory target key specifies the destination filename to use for the report. The reports are in XML format,
an .xml file extension is suggested.

	Optionally, you can configure the name of your project via the name key.

Cobertura

Also originating from the Java world, Cobertura-format reports are becoming a standard way of exchanging coverage data
between tools. It is configured by setting the
cobertura key. The default values are outlined below:

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 reports:
 cobertura:
 target: <file> # no default value, you must specify
 name: ''

	The mandatory target key specifies the destination filename to use for the report. The reports are in XML format,
an .xml file extension is suggested.

	Optionally, you can configure the name of your project via the name key.

Crap4j

An older, discontinued tool from the Java world. You can generate Crap4j-compatible reports by setting the crap4j
key. The default values are outlined below:

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 reports:
 crap4j:
 target: <file> # no default value, you must specify
 name: ''

	The mandatory target key specifies the destination filename to use for the report. The reports are in XML format,
an .xml file extension is suggested.

	Optionally, you can configure the name of your project via the name key.

PHP “.cov”

A PHP or “.cov” report is a raw serialisation of internal php-code-coverage state, allowing for full fidelity of data to be
preserved. They can be manipulated by the phpcov [https://github.com/sebastianbergmann/phpcov] tool, for instance to combine reports from multiple testing tools.
You can generate PHP “.cov” reports by setting the php key.

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 reports:
 php:
 target: <file> # no default value, you must specify

	The mandatory target key specifies the destination filename to use for the report. The reports are actually PHP,
but a .cov file extension is customary.

PHPUnit XML

You can generate PHPUnit XML reports by setting the xml key.

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 reports:
 xml:
 target: <directory> # no default value, you must specify

	The mandatory target key specifies the target directory to use for the report.

Branch and path coverage

When using Xdebug as a coverage driver, it has the ability to generate branch and path coverage data as well as the
traditional line-based data. More information on this topic is available at https://doug.codes/php-code-coverage.

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 branchAndPathCoverage: true

By default branchAndPathCoverage is true when running under Xdebug, false otherwise.

Caching

Since analysing source code files to generate coverage reports is computationally expensive, Behat Code Coverage
makes use of a cache to ameliorate this.

default:
 extensions:
 DVDoug\Behat\CodeCoverage\Extension:
 cache: <directory>

The default cache directory is sys_get_temp_dir() . '/behat-code-coverage-cache'. You may wish to relocate this
this to be inside your project workspace.

Index

 nav.xhtml

 Table of Contents

 		
 Behat Code Coverage

 		
 Installation

 		
 Compatibility

 		
 Configuration

 		
 Driver

 		
 Filter

 		
 Reports

 		
 Text

 		
 HTML

 		
 Clover

 		
 Cobertura

 		
 Crap4j

 		
 PHP “.cov”

 		
 PHPUnit XML

 		
 Branch and path coverage

 		
 Caching

_static/minus.png

_static/plus.png

_static/file.png

